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Abstract. Prosodic boundary prediction is very important and challenging in
the speech synthesis task, the result of prosodic prediction directly determines
the quality of speech synthesis. In this paper, we proposed a prosodic boundary
prediction method based on “encoding-decoding” frame while using an effective
position attention mechanism to further improve performance. Finally, we
investigate the use of Random Forest and Gradient Boosting Decision Tree to
explore the potential of combined multiple models. The experimental results
show that compared with the current best method of prosodic structure (Bi-
LSTM), the proposed method presented a good result with F1-Score in terms of
prosodic words, prosodic phrases, intonation phrases; the subjective experiment
also shows that the proposed method can improve the quality and naturalness of
synthesized speech.
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1 Introduction

Speech synthesis is a very important field in the study of speech interaction, it’s main
purpose is to convert normal language text into speech. Generally, we use naturalness
and intelligibility [1] to judge the quality of the Speech synthesis system. In recent
years, the performance of speech synthesis is getting better and better, but the natu-
ralness of synthesized speech still has a certain gap compared with the real speech. One
of the most important reason is that the performance of the existing prosody prediction
model is not good enough.

Prosody prediction can be treated as a sequence labeling or sequence to sequence
problem, we want to learn a function f : X ! Y that maps an input sequence x to the
corresponding label sequence y. In fact, we add labels to indicate the boundary of each
word so we can restore the prosodic structure through this boundary information.
Therefore, the essence of the prosody prediction problem is a boundary judgment
problem at different prosodic levels. In mandarin speech synthesis systems, a typical
hierarchical prosodic structure can significantly improve the accuracy of prosody
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prediction to distinguish different levels of pauses between words in speech. Normally,
the prosodic boundaries are often classified into prosodic word (PW), prosodic phrase
(PPH) and intonational phrase (IPH) [2].

In this work, we investigate how prosody prediction can benefit from the strong
modeling capacity of sequence to sequence models. we also investigate the use of
multi-model ensemble to explore the performance of combined multiple models at the
decision level. The rest of this paper is organized as follows: Sect. 2 offers a brief
overview of the existing research work that is related to this research; in Sects. 3, 4 the
proposed approach is described in detail; experimental results are given in Sect. 5 to
demonstrate the feasibility and performance of the proposed method; and, finally, a
brief conclusion and future works are presented in Sect. 6.

2 Related Works

2.1 Traditional Methods

Traditional methods including rules-based methods and statistical machine learning
based methods. Most of the early methods are rules-based methods, the idea of which is
to use empirical rules to map the syntactic structure to the level of the prosodic
structure [3]. With the development of statistical machine learning, many machine
learning methods are gradually applied to the prediction of prosodic structures, such as
decision trees [2] and conditional random fields (CRF) [4].

It is worth mentioning that the CRF model is one of the best models that we still
using now, it’s a very simple but surprisingly effective tagging model. therefore, in
comparison with the traditional methods, we will focus on the CRF model.

The core idea of CRF is not complicated, for sequence labeling tasks, it is often
beneficial to explicitly consider the correlations between adjacent labels [28]. Corre-

lations between adjacent labels can be modeled as a transition matrix .

Given a sentence S = ðc1; c2; :. . .; cLÞ, we have corresponding scores . For a

label sequence y = ðy1; y2; :. . .; yLÞ, we define it’s unnormalized score to be

sðS; yÞ ¼
XL

i¼1

Ei;yi þ
XL�1

i¼1

Tyi;yiþ 1 ð1Þ

then we can takes the form of linear chain CRF [29], the probability of the label
sequence is defined as

PðyjSÞ ¼ esðS;yÞP
y02Y esðS;y

0Þ ð2Þ

where Y is the set of all valid label sequences. Then the loss of the proposed model is
defined as the negative log-likelihood of the ground-truth label sequence y�,
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LðS; y�Þ ¼ � logPðy�jSÞ ð3Þ

During training, the loss function is minimized by back propagation. During test,
Viterbi algorithm is applied to quickly find the label sequence with maximum
probability.

2.2 Deep Neural Networks Based Method

As a sequence labeling problem, prosody prediction can be expressed like other
sequence labeling problems as Eq. (4),

ŷ ¼ argmax
y

PðyjxÞ ð4Þ

means that we want to find the best label sequence y given an input sequence x.
In practical terms, we will considering all available information from the input and

the emitted output sequences, it’s turned to find the best parameter set h that maximizes
the likelihood which can be described by the following expression

argmax
h

YT

t¼1

Pðytjyt�1
1 ; x; hÞ ð5Þ

where yt�1
1 represents the predicted output sequence prior to time step t.

With the rapid development of deep neural networks in recent years, related
technologies and models have been applied to many fields [5–7], those methods also
been applied to sequence modeling problems [8, 9]. Vadapalli et al. [10] proposed a
prosodic structure prediction model based on RNN and added word vectors as semantic
features. Experimental results show that RNN-based methods can greatly improve the
performance comparing by traditional machine learning methods (such as conditional
random fields), and meanwhile, the vector feature of words can well adapt to the model
of cyclic neural network. Ding et al. [11] from another perspective, the word (rather
than the traditional grammatical word) as the unit of prediction of prosodic structure,
use of vector as the RNN input to replace other traditional features directly. The
advantage of this approach is it does not rely on the precision of other text analysis.

Recently, encoder-decoder neural network frames have been successfully applied in
many sequence learning problems such as machine translation [8] and speech recog-
nition [12]. The framework is firstly introduced in [8, 13] and the encoder and decoder
are two separate RNNs. The main idea behind the encoder-decoder frame is to encode
input sequence x into a dense vector c. This vector encodes information of the whole
source sequence and then use this vector to generate corresponding output sequence,
which can be expressed as follows:

PðyÞ ¼
YT

t¼1

Pðytjyt�1
1 ; cÞ ð6Þ
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The attention mechanism introduced in [14] enables the encoder-decoder archi-
tecture to learn to align and decode simultaneously.

3 Proposed Approach

3.1 Basic Encoder-Decoder Framework

The prosody prediction task is to generate the boundary labeling sequence y from the
word sequence x, Let xi to represent a word and 0 or 1 represent the Prosodic boundary.
Considering the ability to better model long-term dependencies, we use LSTM [15] as
the basic recurrent network unit. Furthermore, bidirectional LSTM as the encoder
module and unidirectional LSTM as the decoder module. Based on this, the main
Framework is illustrated in Fig. 1.

The encoder reads the word sequence forward and backward. The forward pro-
cesses and the backward processes read the word sequence in its original order and
reverse order, at the same time, generates forward hidden states and backward hidden
states at each time step. The final encoder hidden state at each time step is a con-
catenation of the forward states and backward states. The last state of the encoder
carries information of the entire input word sequence and we use it and the initial
decoder hidden state. The decoder reads the hidden states sequence forward and
generate boundary labeling sequence. At each decoding step, the decoder state is
calculated as a function of the previous decoder state, the previous emitted label, and
the aligned encoder hidden state.

3.2 Encoder-Decoder Framework with Attention

The attention mechanism is proposed mainly to solve the problem of losing hidden
states information [8, 13]. Under the encoder-decoder frame, the hidden states carry
information of the whole input sequence, but along the forward and backward prop-
agation, information may gradually lose. Thus, instead of only utilizing the hidden state

1x 2x

•••

3x Tx

1h 2h 3h Th

•••

0 1 0 1

Decoder

Encoder

Fig. 1. Encoder-decoder model with aligned input
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at each step, the use of context vector c gives us any additional supporting information,
especially those require longer term dependencies that is not being fully captured by the
hidden state. Motivated by the use of attention mechanism in encoder decoder frames,
we propose the attention-based model for prosody prediction which main framework is
illustrated in Fig. 2.

In the proposed model, we still use the same basic encoder-decoder frame as above,
encoder reads the word sequence forward and backward and generate hidden states.
The only difference is that we add a context vector ci at each time step. where the
context vector ci is calculated as a weighted average of the encoder hidden states
h = ðh1; h2; ::. . .; hTÞ. the context vector can be regarded as information that when
model focusing on a few hidden states. we reuse the pre-computed hidden states h of
the encoder to produce intent class distribution.

There are many studies on the mechanism of attention [16, 17] and which have
achieved very good results. We adopt positional attention [18] to calculate attention
weights which is suitable for prosody prediction task.

We can describe that progress as follows:

eðhj; pjÞ ¼ VT tanhðWHhj þWPpj þ bÞ ð7Þ

And,

aj ¼
expðeðhj; pjÞÞ

PK

k¼1
expðeðhk; pkÞÞ

ð8Þ

Finally, the context vector can be expressed by Eq. (9),

ci ¼
XT

j¼1

ajhj ð9Þ

1x 2x

•••

3x Tx

1h 2h 3h Th

•••

0 1 0 1

Decoder

Encoder

1c 2c 3c Tc

Fig. 2. Encoder-decoder model with aligned input and attention
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4 Multi-model Ensemble

Ensemble learning achieve a better generalization performance than a single learner by
constructing and combining multiple learners. According to the generation of indi-
vidual learners, the current ensemble learning methods can be broadly divided into two
categories, the first is Boosting, it is a strong dependency between the individual
learners, serialization methods must be generated in series; the second is Bagging, there
is no strong dependencies between individual learner and can be generated in parallel.
We use Random Forest(RF) and Gradient Boost Decision Tree (GBDT), the two most
representative Boosting and Bagging algorithms as the main method of model
ensemble.

4.1 Random Forest

Random Forest, RF [19] is an extended variant of Bagging. The training algorithm for
random forests applies the general technique of bagging to tree learners. Given a
training set X = fx1; x1; :. . .; xng with responses Y = fy1; y1; :. . .; yng, bagging
repeatedly selects a random sample with replacement of the training set and fits trees to
these samples. After training, predictions for unseen samples x0 can be made by
averaging the predictions from all the individual regression trees on x0:

f̂ ¼ 1
T

XT

t¼1

ftðx0Þ ð10Þ

or by taking the majority vote in the case of classification trees. Random forest is
simple and easy to implement, and leads to better model performance because it
decreases the variance of the model, without increasing the bias. This means that while
the predictions of a single tree are highly sensitive to noise in its training set, the
average of many trees is not, as long as the trees are not correlated. Simply training
many trees on a single training set would give strongly correlated trees.

4.2 Gradient Boosting Decision Tree

Gradient Boosting Decision Tree, GBDT [20, 21] is a typical method belonging to
Boosting. In the GBDT iteration, suppose the strong learner we obtained in the pre-
vious iteration is ft�1ðxÞ and the loss function is Lðy; ft�1ðxÞÞ. The goal of our current
iteration is to find a CART [22] TtðxÞ minimizes the loss,

Lðy; ftðxÞÞ ¼ Lðy; ft�1ðxÞÞþ TtðxÞ ð11Þ

A decision tree partitions the space of all joint predictor variant into disjoint regions
Rj; j ¼ 1; 2; . . .; J. as represented by the terminal nodes of the tree. A constant cj is
assigned to each such region. Then GBDT is a sum of such trees, where M is the
numbers of trees in GBDT,
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fMðxÞ ¼
XM

m¼1

TmðxÞ ð12Þ

GBDT is complicated than RF and can’t be generated in parallel, but it may leads to
a better performance in some tasks.

4.3 Structure

We adopt 4 classifier: CRF, BLSTM, Basic encoder-decoder frame(aligned model),
Attention model as the basic classifier. The framework of multi-model ensemble is
shown in Fig. 3.

Firstly, the CRF uses linguistic class features (POS, Position information etc.) and
the LSTM, Aligned mode, Attention model use embedding features, then the proba-
bility of Breaks (PW, PPH and IPH) can be obtained by these four single classifiers;
Next, the output probabilities, together with the important features are consisting of the
inputs for model fusion module. During model fusion, two different methods, RF and
GBDT are trained and employed to make the final prediction.

5 Experiments

5.1 Settings

Considering that the word is often used as the ideographic unit in Mandarin, which
carries more semantic and boundary information than isolated character, we decide use
word as basic input units in our experiments.

corpus

GBDTRF /

CRF LSTM Aligned Attention

.....,, LengthPositionPOS EmbeddingsWord

iesProbabilit iesProbabilit

Tags

Fig. 3. Flowchart of model ensemble
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Datasets. We evaluate our model on a speech synthesis corpus which contains 66150
sentences. The whole corpus is partitioned into training, validation and test set for all
experiments according to 7:2:1. Word segmentation and POS tagging are also anno-
tated by expert annotator.

Word Embeddings. Word embeddings [23, 24] lead to a significant improvements
over the linguistic features which don’t take into account the distributional behavior of
words [25]. And this issue has been addressed by word embedding which encodes a
word as a low-dimensional vector. We used 8G Mandarin text corpus which word
vocabulary size is 393255, The word embedding dimension is set as 128, the context
window size is set as 5 during training, and we also use both hierarchical softmax and
5-word negative sampling.

CRF. Same as traditional labeling tasks, we train CRF basically on linguistic features
like POS, word position, the length of word, etc.

Bi-LSTM. Standard method used for prosodic boundaries prediction based on Bi-
LSTM. We use 2-layer Bi-LSTM as the main time series modeling part. each layer with
256x2 LSTM hidden units, and then followed a fully connected layer, finally, a binary
output softmax layers is used to output the probabilities of each boundary.

Aligned. Basic encoder-decoder frame with aligned input show in Fig. 2. Encoder is a
1-layer Bi-LSTM with 256x2 hidden units. Decoder is a 1-layer unidirectional LSTM
with 256 hidden units. the output of encoder as the input of decoder, and the final state
of encoder as the initial state of decoder.

Attention. Encoder-decoder frame with attention show in Fig. 3. The main structure is
the same as LSTM_Aligned, the only difference is that it adds attention mechanism.

RF. Random forest for prosodic boundaries prediction based on the output probability
of the four single classifiers (CRF, BLSTM, LSTM_Aligned and LSTM_Attention).

GBDT. GBDT for prosodic boundaries prediction based on the output probability of
the four single classifiers (CRF, BLSTM, LSTM_Aligned and LSTM_Attention).

All networks mentioned above are trained with Adam [26], the initial learning rate
been set to 0.003 and reset the learning rate by exponential decay (decay rate set to
0.02) for every epoch. The batch size is 20.

5.2 Main Result

Table 1 gives the performances of all six methods described in 5.1, We report our
results in terms of F1-Score, which is defined as the harmonic mean of precision and
recall. We analyze the results below.

First, we compare standard statistical model CRF with the standard neural model
LSTM. In Table 1, we can see clearly that the Bi-LSTM model perform well in all the
hierarchies. Many successful research and experiences also shown that LSTM-based
model performs better than statistical methods for complex annotation tasks.

Then, we compare Bi-LSTM, Aligned model and Attention model. These methods
are all based on LSTM, the differences is the structure and whether the attention
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mechanism been applied. We can infer from the Table 1 that the aligned encoder-
decoder structure perform better than basic Bi-LSTM, we suspect that compared to the
use of LSTM to do classification, the prosody prediction task is more biased towards
the seq2seq architecture. Not to our surprise, the model with attention perform best in
all of them, and, the higher the prosodic level (such as IPH), the more obvious the effect
of improvement. The probable reason for this is that for IPH, a longer span of con-
textual information is needed to make the correct prediction. This is the same with IPH
labeling, the same need to consider the entire sentence information to give the final
annotation results. With respect to aligned based encoder-decoder, attention-based
encoder-decoder is precisely this predictive-enabling contextual information.

Finally, we can see from Table 1 that the integrated model (RF and GBDT)
achieves superior performance than all the single models and GBDT shows an absolute
increase of around 5% than CRF for IPH prediction. It can be explained by ensemble
learning can learn the advantages of all the individual models, prevent over-fitting
effectively and improve the generalization performance. In the comparison between
GBDT and RF, GBDT performed slightly better, in fact the performance of the two are
very close, all showed the ability of ensemble learning should have.

Considering that the linguistic class features can be also applied into the deep
learning models, if we combine the word embeddings and all the linguistic feature
together we can get a new word embeddings. Specifically, we concatenate the word
POS tag, position, length, cumulative length and original word embeddings by last
dimension and use this new word embeddings to train and test all the models, the result
shown in Table 2.

By comparing Tables 1 and 2, we can see a slight improvement in the performance
of each model, and the convergence of multiple features is helpful for the final per-
formance improvement. To evaluate the effects of four single classifiers for the best
ensemble method GBDT. We further calculate the contribution of each feature by Gini
importance [27], which is used as a general indicator of feature importance. Take IPH

Table 1. Performance of F1-Score

CRF Bi-LSTM Aligned Attention RF GBDT

PW 95.02 95.61 96.52 96.76 97.13 97.22
PPH 82.04 82.25 83.82 83.86 84.84 84.91
IPH 78.80 80.42 83.49 83.62 83.86 83.89

Table 2. Performance of F1-Score on muilti-features

CRF Bi-LSTM Aligned Attention RF GBDT

PW 95.02 95.75 97.03 97.11 97.25 97.26
PPH 82.04 82.31 84.21 84.31 85.01 85.06
IPH 78.80 80.46 83.63 83.70 83.92 83.96
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prediction for example, the degree of the top five features contributions for IPH pre-
diction on word-based GBDT are listed in Table 3.

This means the output from the LSTM based method are playing the dominant role
rather than CRF. The previous results in Table 1, we can see that the Attention-based
approach can lead to more accurate results, and it does contribute the most to all
methods in this ensemble method.

6 Conclusions

In this paper, we explored strategies in utilizing explicit alignment information in the
attention-based encoder-decoder neural network models for Mandarin prosodic
boundaries prediction, and we also use ensemble learning to further enhance the
generalization performance of this model. Our results show that attention-based model
is more suitable than basic LSTM approach, compared to a single model, the use of
multi-model ensemble can bring very large performance improvements. Meanwhile,
the model fusion results indicate that the dependency of results on BLSTM is greater
than CRF, and the features generated from feature ranking module can further boost the
performance of prosodic boundaries prediction. In the future, We have two paths to go,
the first is try to deepen the encoders and decoders to see if it can learn more abstract
concepts. The second is to change the type of encoder and decoder, for example, we
can use CNN to be the encoder or the decoder.
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